Ziyu Liu 1Limei Qi 1,2,*Feng Lan 3Chuwen Lan 4,5[ ... ]Xiang Tao 1
Author Affiliations
Abstract
1 School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
3 The Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
4 Shenzhen Research Institute, Beijing University of Posts and Telecommunications, Shenzhen 518000, China
5 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
We proposed a multifunctional terahertz metasurface based on a double L-shaped pattern and a vanadium dioxide (VO2) film separated by polyimide. When the VO2 film is an insulator, a dual-band electromagnetically induced transparency effect is obtained, and the physical mechanism is investigated based on the current distribution and “two-particle” model. When the VO2 film is a metal, a dual-band linear-to-circular polarization converter, in which the y-polarized linear wave can be effectively converted to left-handed circularly polarized (LCP) and right-handed circularly polarized simultaneously in different bands, can be achieved. By arranging the metal pattern rotating 30°, a multifunctional antenna can be obtained. When the VO2 is an insulator, the radiation of the LCP wave is divided into four beams, with two beams reflected and two beams transmitted. When the VO2 is in the metallic state, we can only get the co-polarized reflected wave with a 21° angle. Moreover, in our design, the VO2 film does not need lithography to obtain certain patterns, which improves the convenience of fabrication and experiment. Our design opens a new way for the development of multifunctional terahertz devices and has potential applications in the terahertz communication field.
terahertz VO2 antenna metasurface 
Chinese Optics Letters
2022, 20(1): 013602
作者单位
摘要
1 北京邮电大学电子工程学院, 北京 100876
2 东南大学毫米波国家重点实验室, 江苏 南京 210096
超材料具有自然界材料所不具备的电磁参数,通过适当设计可实现对电磁波的调控。综述了超材料非 对称传输器件的研究现状,分别介绍了电磁波非对称传输的基本原理, GHz、THz频段线极化波非对称传输器件及圆极化波非对称传输器件的研究成果。分析表明基于超材料的非 传输器件主要集中在微波波段,对太赫兹频段的研究较少,特别是在实验验证方面。最后讨论了超材料非对 称传输器件的发展方向。
电磁学 非对称传输 超材料 太赫兹 手性 极化 electromagnetics asymmetric transmission metamaterial terahertz chirality polarization 
量子电子学报
2018, 35(4): 385
Author Affiliations
Abstract
School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
The complex band structures of a 1D anisotropic graphene photonic crystal are investigated, and the dispersion relations are confirmed using the transfer matrix method and simulation of commercial software. It is found that the result of using effective medium theory can fit the derived dispersion curves in the low wave vector. Transmission, absorption, and reflection at oblique incident angles are studied for the structure, respectively. Omni-gaps exist for angles as high as 80° for two polarizations. Physical mechanisms of the tunable dispersion and transmission are explained by the permittivity of graphene and the effective permittivity of the multilayer structure.
(160.3918) Metamaterials (160.5293) Photonic bandgap materials (260.2030) Dispersion (260.2065) Effective medium theory. 
Photonics Research
2017, 5(6): 06000543
Author Affiliations
Abstract
Two-dimensional metallic photonic crystal slabs with square lattice are proposed to be used for the design of waveguide bandpass filters operating in millimeter to terahertz region. Filter characteristics are studied when rod radii and lattice constants are changed. Based on the frequency scaling technique, a series of higher frequency filters has been designed. By using laser drilling and welding processing techniques, a compact waveguide filter embedded in an EIA-WR10 waveguide with central frequency 145.5 GHz and 3-dB bandwidth of 5.26 GHz is fabricated and measured. The measurement data agree well with the simulation prediction.
040.2235 Far infrared or terahertz 120.2440 Filters 050.5298 Photonic crystals 120.7000 Transmission 
Chinese Optics Letters
2014, 12(4): 040401
作者单位
摘要
曲阜师范大学物理工程学院, 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
提出了一种包层周期呈线性啁啾分布的新型空心布拉格光纤(HC-BF)包层结构设计,旨在满足基于中红外吸收光谱的多组分痕量气体检测应用需求。数值研究了这种准周期包层结构HC-BF中近掠入射条件下TE和TM模的带隙结构和模式损耗特性,并与常规周期包层结构HC-BF进行了对比。结果表明,对于包层周期线性啁啾分布结构的HC-BF,通过增大包层周期线性增加量和包层层数均可以有效拓展光子带隙(PBG)宽度,并且其展宽效果随两者增加而明显增强,同时PBG中心波长产生红移。在展宽的PBG波长范围内,该新型包层结构HC-BF依然能够保持0.01 dB/m量级的低传输损耗,表明其具有优良的中红外宽带低损耗传输特性。
光纤光学 空心布拉格光纤 中红外宽带传输 痕量气体检测 
中国激光
2013, 40(2): 0205004
Author Affiliations
Abstract
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054
The relative band gap for a rhombus lattice photonic crystal is studied by plane wave expansion method and high frequency structure simulator (HFSS) simulation. General wave vectors in the first Briliouin zone are derived. The relative band gap as a function of air-filling factor and background material is investigated, respectively, and the nature of photonic band gap for different lattice angles is analyzed by the distribution of electric energy. These results would provide theoretical instruction for designing optical integrated devices using photonic crystal with a rhombus lattice.
光子晶体 菱形晶格 相对带隙宽度 空气填充率 相对介电常数 填充率 160.4670 Optical materials 230.0230 Optical devices 230.3120 Integrated optics devices 220.0220 Optical design and fabrication 
Chinese Optics Letters
2008, 6(4): 279

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!